Search results for "KCNQ3 Potassium Channel"
showing 4 items of 4 documents
Immunohistochemical analysis of KCNQ3 potassium channels in mouse brain.
2005
KCNQ-type potassium channels generate the so-called M-current regulating excitability in many neurons. Mutations in KCNQ2/KCNQ3 channels can cause benign familial neonatal convulsions (BFNC). We describe the immunohistochemical staining of adult and developing mouse brain using an antibody directed against the N-terminus of KCNQ3 channels (KCNQ3N). A widespread KCNQ3N immunoreactivity predominantly of neuropil but also of somata was detected in different regions of the adult mouse brain, in particular in the hippocampus, cortex, thalamus and cerebellum. This staining pattern appeared gradually and became more intense during development. In the pyramidal cell layer of the hippocampus, the im…
A novel mutation in KCNQ3-related benign familial neonatal epilepsy: electroclinical features and neurodevelopmental outcome.
2019
Benign familial neonatal epilepsy (BFNE) is caused, in about 5% of families, by mutations in the KCNQ3 gene encoding voltage-gated potassium channel subunits. Usually, newborns with BFNE show a normal neurological outcome, but recently, refractory seizures and/or developmental disability have been reported suggesting phenotype variability associated with KCNQ3-related BFNE. Here, we describe a proband from a BFNE family carrying a novel variant in the KCNQ3 gene. Regarding the paucity of data in the literature, we describe the presented case with a view to further establishing: (1) a genotype/phenotype correlation in order to define a BFNE phenotype associated with favourable outcome; (2) a…
A novel KCNQ3 mutation in familial epilepsy with focal seizures and intellectual disability
2015
Mutations in the KCNQ2 gene encoding for voltage-gated potassium channel subunits have been found in patients affected with early onset epilepsies with wide phenotypic heterogeneity, ranging from benign familial neonatal seizures (BFNS) to epileptic encephalopathy with cognitive impairment, drug resistance, and characteristic electroencephalography (EEG) and neuroradiologic features. By contrast, only few KCNQ3 mutations have been rarely described, mostly in patients with typical BFNS. We report clinical, genetic, and functional data from a family in which early onset epilepsy and neurocognitive deficits segregated with a novel mutation in KCNQ3 (c.989G>T; p.R330L). Electrophysiological stu…
Benign familial infantile epilepsy associated with KCNQ3 mutation: a rare occurrence or an underestimated event?
2020
Abstract Benign familial infantile epilepsy (BFIE) is the most genetically heterogeneous phenotype among early-onset familial infantile epilepsies. It has an autosomal dominant inheritance pattern with incomplete penetrance. Although PRRT2 is the most mutated gene detected in families with BFIE, other mutations in KCNQ2, SCN2A, and GABRA6 genes have also been described. To date, KCNQ3 mutations have been detected in only four patients with BFIE. Here, we describe the clinical pattern and course of an additional individual with BFIE associated with a novel missense heterozygous KCNQ3 c.1850G>C variant inherited by his unaffected father. The incidence of KCNQ3 mutations among BFIE patients…